Putative antirecombinase Srs2 DNA helicase promotes noncrossover homologous recombination avoiding loss of heterozygosity.

نویسندگان

  • Tohru Miura
  • Takehiko Shibata
  • Kohji Kusano
چکیده

DNA damage alone or DNA replication fork arrest at damaged sites may induce DNA double-strand breaks and initiate homologous recombination. This event can result in a crossover with a homologous chromosome, causing loss of heterozygosity along the chromosome. It is known that Srs2 acts as an antirecombinase at the replication fork: it is recruited by the SUMO (a small ubiquitin-related modifier)-conjugated DNA-polymerase sliding clamp (PCNA) and interferes with Rad51/Rad52-mediated homologous recombination. Here, we report that Srs2 promotes another type of homologous recombination that produces noncrossover products only, in collaboration with PCNA and Rad51. Srs2 proteins lacking the Rad51-binding domain, PCNA-SUMO-binding motifs, or ATP hydrolysis-dependent DNA helicase activity reduce this noncrossover recombination. However, the removal of either the Rad51-binding domain or the PCNA-binding motif strongly increases crossovers. Srs2 gene mutations are epistatic to mutations in the PCNA modification-related genes encoding PCNA, Siz1 (a SUMO ligase) and Rad6 (a ubiquitin-conjugating protein). Knocking out RAD51 blocked this recombination but enhanced nonhomologous end-joining. We hypothesize that, during DNA double-strand break repair, Srs2 mediates collaboration between the Rad51 nucleofilament and PCNA-SUMO and directs the heteroduplex intermediate to DNA synthesis in a moving bubble. This Rad51/Rad52/Srs2/PCNA-mediated noncrossover pathway avoids both interchromosomal crossover and imprecise end-joining, two potential paths leading to loss of heterozygosity, and contributes to genome maintenance and human health.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Srs2 promotes synthesis-dependent strand annealing by disrupting DNA polymerase δ-extending D-loops

Synthesis-dependent strand annealing (SDSA) is the preferred mode of homologous recombination in somatic cells leading to an obligatory non-crossover outcome, thus avoiding the potential for chromosomal rearrangements and loss of heterozygosity. Genetic analysis identified the Srs2 helicase as a prime candidate to promote SDSA. Here, we demonstrate that Srs2 disrupts D-loops in an ATP-dependent...

متن کامل

Homologous recombination via synthesis-dependent strand annealing in yeast requires the Irc20 and Srs2 DNA helicases.

Synthesis-dependent strand-annealing (SDSA)-mediated homologous recombination replaces the sequence around a DNA double-strand break (DSB) with a copy of a homologous DNA template, while maintaining the original configuration of the flanking regions. In somatic cells at the 4n stage, Holliday-junction-mediated homologous recombination and nonhomologous end joining (NHEJ) cause crossovers (CO) b...

متن کامل

Srs2 and Sgs1–Top3 Suppress Crossovers during Double-Strand Break Repair in Yeast

Very few gene conversions in mitotic cells are associated with crossovers, suggesting that these events are regulated. This may be important for the maintenance of genetic stability. We have analyzed the relationship between homologous recombination and crossing-over in haploid budding yeast and identified factors involved in the regulation of crossover outcomes. Gene conversions unaccompanied ...

متن کامل

Role of ATP hydrolysis in the antirecombinase function of Saccharomyces cerevisiae Srs2 protein.

Mutants of the Saccharomyces cerevisiae SRS2 gene are hyperrecombinogenic and sensitive to genotoxic agents, and they exhibit a synthetic lethality with mutations that compromise DNA repair or other chromosomal processes. In addition, srs2 mutants fail to adapt or recover from DNA damage checkpoint-imposed G2/M arrest. These phenotypic consequences of ablating SRS2 function are effectively over...

متن کامل

Involvement of Schizosaccharomyces pombe Srs2 in cellular responses to DNA damage.

In the budding yeast Saccharomyces cerevisiae the Srs2/RadH DNA helicase promotes survival after ultraviolet (UV) irradiation, and has been implicated in DNA repair, recombination and checkpoint signalling following DNA damage. A second helicase, Sgs1, is the S.cerevisiae homologue of the human BLM and WRN proteins, which are defective in cancer predisposition and/or premature ageing syndromes....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 40  شماره 

صفحات  -

تاریخ انتشار 2013